
B
Data Types and Structures

Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
NWSMSD_MEDIA_LOCATION . . . . . . . . . . . . . . . . . B-2
NWSM_DEVICE_STATUS . . . . . . . . . . . . . . . . . . . . . B-3
NWSM_OBJECT_STATUS . . . . . . . . . . . . . . . . . . . . . B-4
NWSMSD_SESSION_ID . . . . . . . . . . . . . . . . . . . . . . B-5
NWSMSD_DEVICE_ID . . . . . . . . . . . . . . . . . . . . . . . B-6
CAPACITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-8
NWSMSD_MEDIA_ID . . . . . . . . . . . . . . . . . . . . . . . . B-9
NWSMSD_HEADER_BUFFER . . . . . . . . . . . . . . . . B-12
NWSMSD_TRANS_BUF_POSITION . . . . . . . . . . . . B-13
NWSMSD_MEDIA_POSITION . . . . . . . . . . . . . . . . . B-14
NWSMSD_CONTROL_BLOCK . . . . . . . . . . . . . . . . B-16
NWSMSD_DEVICE_LIST . . . . . . . . . . . . . . . . . . . . B-20
NWSMSD_MEDIA_LIST . . . . . . . . . . . . . . . . . . . . . B-21
NWSMSD_MEDIA_STATUS . . . . . . . . . . . . . . . . . . B-22
NWSMSD_TRANSFER_BUF_INFO . . . . . . . . . . . . . B-23
NWSMSD_TIMEOUTS . . . . . . . . . . . . . . . . . . . . . . B-24
NWSMSD_SDI_DEFAULTS . . . . . . . . . . . . . . . . . . . B-25

Rev 2.0 B-1



Storage Device APIs

Data Types

BUFFER unsigned char
BUFFERPTR unsigned char *
CCODE unsigned long
NWSMSD_DEVICE_HANDLE UINT32
NWSMSD_MEDIA_HANDLE UINT32
NWSMSD_SESSION_HANDLE UINT32
STRING unsigned char
UINT16 16-bit unsigned integer
UINT32 32-bit unsigned long

Data Structures
NWSMSD_MEDIA_LOCATION

typedef struct
{

UINT32 objectType;
UINT32 uniqueDeviceID;
UINT32 reserved0;
UINT32 reserved1;

} NWSMSD_OBJECT_LOCATION;

objectType is the type of object that contains or will contain
the media:

NWSMSD_DEVICE
NWSMSD_STORAGE_BAY

uniqueDeviceID passes or returns the device’s ID. This value
is contained in the NWSMSD_DEVICE_ID structure, which is
set by NWSMSDSubjugateMedia, NWSMSDMountMedia,

or NWSMSDGetDeviceCharacteristics.

reserved0

Location is not used in this release of SDI.

reserved1

B-2 Rev 2.0



Data Types and Structures

NWSM_DEVICE_STATUS

typedef struct
{

UINT32 numberOfSiblings;
UINT32 reserved0;
UINT32 reserved1;
UINT32 reserved2;
NWSMSD_OBJECT_STATUS status;

} NWSMSD_DEVICE_STATUS;

numberOfSiblings returns the number of sibling devices the
device has. This value is returned for each sibling.

status returns the current state of the device. See
NWSMSD_DEVICE_STATUS for more information.

Rev 2.0 B-3



Storage Device APIs

NWSM_OBJECT_STATUS

typedef struct
{

UINT32 objectStatus;
UINT32 objectOperation;
UINT32 objectMode;
UINT32 reserved;

} NWSMSD_OBJECT_STATUS;

objectStatus returns the object’s status as reported by Media
Manager:

OBJECT_ACTIVATED 0x00000001
OBJECT_CREATED 0x00000002

OBJECT_RESERVED 0x00000010
OBJECT_BEING_IDENTIFIED 0x00000020
OBJECT_FAILURE 0x00000080

OBJECT_REMOVABLE 0x00000100
OBJECT_READ_ONLY 0x00000200

OBJECT_IN_DEVICE 0x00010000
OBJECT_LOADABLE 0x00080000

OBJECT_BEING_LOADED 0x00080000
OBJECT_DEVICE_LOCK 0x01000000
OBJECT_REMIRRORING 0x04000000
OBJECT_SELECTED 0x08000000

objectOperation returns the object’s current operating mode.
This indicator, in combination with objectStatus, gives the
complete state of the object. The modes are:

NWSMSD_OPERATION_NONE 0x00000000
NWSMSD_OPERATION_WRITING 0x00000001
NWSMSD_OPERATION_READING 0x00000002
NWSMSD_OPERATION_FORMATTING 0x00000003

objectMode returns a bit map of the object’s current access
mode. The modes are:

NWSMSD_NOT_SUBJUGATED
NWSMSD_READ_MODE
NWSMSD_WRITE_MODE
NWSMSD_SHARE_READ_MODE
NWSMSD_SHARE_WRITE_MODE

reserved is scheduled for future use

B-4 Rev 2.0



Data Types and Structures

NWSMSD_SESSION_ID

typedef struct
{

UINT32 sessionDateAndTime;
char sessionDescription[NWSM_MAX_DESCRIPTION_LEN];
char sourceName[NWSM_MAX_TARGET_SRVC_NAME_LEN];
char sourceType[NWSM_MAX_TARGET_SRVC_TYPE_LEN];
char sourceVersion[NWSM_MAX_TARGET_SRVC_VER_LEN];

} NWSMSD_SESSION_ID;

sessionDataAndTime passes or returns the session’s date and
time. To pack/unpack this data see "DOS Date and Time
Functions" in the utilities document.

sessionDescription passes a user-supplied session
identification string.

sourceName passes the target’s name. This data is formatted
according to the SIDF specifications.

sourceType passes or returns the target type. This data is
formatted according to the SIDF specifications.

sourceVersion passes or returns the target’s version. This
data is formatted according to the SIDF specifications.

Rev 2.0 B-5



Storage Device APIs

NWSMSD_DEVICE_ID

typedef struct
{

UINT32 uniqueDeviceID;
UINT32 siblingUniqueID;
UINT32 deviceType;
UINT32 deviceRelation;
char deviceName[NWSM_MAX_DEVICE_LABEL_LEN];
NWSMSD_DEVICE_STATUS deviceStatus;
UINT32 reservedStatus;
NWBOOLEAN sequential;
NWBOOLEAN removable;
CAPACITY deviceCapacity;
UINT32 unitSize;
UINT32 reserved0;
UINT32 reserved1;
UINT32 reserved2;
UINT32 reserved3;
UINT32 reserved4;

} NWSMSD_DEVICE_ID;

uniqueDeviceID passes or returns the device’s ID.

siblingUniqueID returns the next device’s ID. If
siblingUniqueID is 0, there is only one device. If it returns
the first device ID received, all the devices have been
identified.

deviceType returns the device’s type as defined by the OS (e.g.,
4 mm, or 8mm)

deviceRelation returns a bit map that shows the device’s
ability to handle media (only one relationship type is
supported under SMS for NetWare v4.0):

NWSMSD_DEVICE_SINGLE_MEDIA 0x00000000
A device qualifies as a single media device if
every media must be manually inserted.

deviceName returns the device’s name as reported by the
device driver via Media Manager.

Note: The name can be set by NWSMSDLabelDevice.

deviceStatus returns the device’s status. See
NWSMSD_DEVICE_STATUS for more information.

reservedStatus returns the device’s assignment. The reserved
statuses are:

NWSMSD_RESERVED_TO_THIS_SDI 0x00000001
NWSMSD_RESERVED_TO_OTHER_APP 0x00000002
NWSMSD_UNRESERVED 0x00000003

B-6 Rev 2.0



Data Types and Structures

sequential is TRUE if the device is sequentially accessed, and
FALSE if it is randomly accessed.

removable is TRUE if the media is removable and FALSE if
the media is fixed.

deviceCapacity returns the usual capacity of the device. This
value may vary depending on the media used, and should only
be used as a guideline.

unitSize returns the device’s basic unit size; usually, this is
the sector size.

Rev 2.0 B-7



Storage Device APIs

CAPACITY

typedef struct
{

UINT32 factor;
UINT32 value;

} CAPACITY;

factor shows value’s unit measurement. The following units
are defined:

NWSMSD_CAPACITY_BYTE
NWSMSD_CAPACITY_KILO
NWSMSD_CAPACITY_MEGA
NWSMSD_CAPACITY_GIGA
NWSMSD_CAPACITY_TERA

value shows the number of units on an object (i.e., the total
capacity of the object). For example, if the fields were set to
the following values:

value = 24
factor = NWSMSD_CAPACITY_GIGA

The total capacity of the object is 24 gigabytes.

Note: SDI always reports the lowest factor possible to
provide the maximum size resolution.

B-8 Rev 2.0



Data Types and Structures

NWSMSD_MEDIA_ID

List Media uses only uniqueID
typedef struct
{

UINT32 uniqueMediaID;
UINT32 mediaSetDateAndTime;
UINT32 mediaDateAndTime;
UINT32 mediaNumber;
BUFFER mediaLabel[NWSM_MAX_MEDIA_LABEL_LEN];
NWSMSD_MEDIA_STATUS mediaStatus;
UINT32 reserved0[3];
NWSMSD_MEDIA_LOCATION mediaLocation;
UINT32 mediaOwner;
UINT32 reservedStatus;
UINT32 mediaType;
NWBOOLEAN sequential;
NWBOOLEAN removable;
UINT32 unitSize;
UINT32 reserved1[3];
CAPACITY totalCapacity;
CAPACITY reserved2;

} NWSMSD_MEDIA_ID;

uinqueMediaID passes or returns the media’s ID. This is
returned by NWSMSDListMedia.

mediaSetDateAndTime passes or returns the creation date
and time of the media set (this is set by SDI). The value is
the same for every medium in the set, and uses the NetWare’s
calendar format (the number of seconds since 1/1/70).

mediaDateAndTime returns the medium’s creation date and
time. The first medium’s date and time is the same as
mediaSetDateAndTime. The following media contains the
date and time when it was created.

mediaNumber passes or returns the medium’s sequence
number within the media set (the value starts from 1). If
mediaSetDateAndTime is used as input and is set to 0, the
first medium in the media set is returned. If it is set to
NWSMSD_END_MEDIA, SDI locates the last known medium
in the media set. SDI has no knowledge of how many media
are in the media set or if the last known media for the media
set is really the last one.

mediaLabel returns the media’s label; this can be a null
string. Each medium in a media set has the same label, but
each medium is made unique through a media (sequence)
number. During read operations, if SDI encounters
end-of-media, it will search for another medium with the same
label and a media number that is one higher than the current
number. During write operations, if SDI encounters end of
media, it will mount an empty media, give the media the

Rev 2.0 B-9



Storage Device APIs

same label, and give it a media number that is one higher
than the previous media.

mediaStatus returns the media’s status. See
NWSMSD_MEDIA_STATUS for more information.

mediaLocation passes or returns the media’s location. See
NWSMSD_MEDIA_LOCATION for more information.

mediaOwner passes or returns an owner value. There are two
media owner groups: Novell and third-party developers. The
Novell-defined owners are:

UNIDENTIFIABLE_MEDIA 0x00000001
HIGH_SIERRA_CDROM_MEDIA 0x00000002
ISO_CDROM_MEDIA 0x00000003
MAC_CDROM_MEDIA 0x00000004
NETWARE_FILE_SYSTEM_MEDIA 0x00000005
INTERNAL_IDENTIFY_TYPE 0x00000007
SMS_MEDIA_TYPE 0x00000008

The third-party-defined owner IDs have the high nibble of the
high byte set to 0xF. If the owner is not known or the media
is unlabeled, mediaOwner is set to 0 and mediaLabel returns
a null string (first character is ’\0’). If the completion code is
not 0 and not SMS_MEDIA_TYPE, the media is labeled by a
non-SMS engine.

reservedStatus returns the media’s assignment. The following
reserved status are defined:

NWSMSD_RESERVED_TO_THIS_SDI 0x00000001
NWSMSD_RESERVED_TO_OTHER_APP 0x00000002
NWSMSD_UNRESERVED 0x00000003

Note: "Other App" refers to non-engine.

mediaType returns the media’s type. The following types are
defined:

NULL_DEVICE 0x00000001
TAPE_4MM 0x00000002
TAPE_8MM 0x00000003
DISK_PARTITION 0x00000004
WORM 0x00000005
NWSMSD_MEDIA_TYPE_LAST 0x00000006

sequential returns TRUE if the media is accessed sequentially,
and FALSE if the media is accessed randomly.

removable returns TRUE if the media is removable, and
FALSE if media is fixed.

B-10 Rev 2.0



Data Types and Structures

unitSize returns the medium’s basic logical sector size in bytes
(this value cannot be set by the engine). See
NWSMSD_DEVICE_ID for more information.

totalCapacity returns the media’s total capacity in sectors. If
this value is unknown, NWSMSD_UNKNOWN is returned.

Rev 2.0 B-11



Storage Device APIs

NWSMSD_HEADER_BUFFER

typedef struct
{

UINT32 bufferSize;
UINT32 headerSize;
NWBOOLEAN reallocateOk;
UINT32 overflowSize;
BUFFER headerBuffer[1];

} NWSMSD_HEADER_BUFFER;

bufferSize indicates the buffer’s size as allocated by the
engine.

headerSize indicates this buffer’ header size.

reallocateOk. Set this to TRUE to allow SDI to realloc
memory if the buffer cannot hold the header.

overflowSize is the number of header bytes that could not fit
into the buffer.

headerBuffer returns the header buffer.

B-12 Rev 2.0



Data Types and Structures

NWSMSD_TRANS_BUF_POSITION

typedef struct
{

UINT16 mediaNumber;
UINT16 partitionNumber;
UINT32 sectorAddress;

} NWSMSD_TRANS_BUF_POSITION;

mediaNumber indicates which medium in the media set the
transfer buffer resides in.

partitionNumber is the partition number the transfer buffer
resides in.

sectorAddress is the absolute sector address of the transfer
buffer.

Rev 2.0 B-13



Storage Device APIs

NWSMSD_MEDIA_POSITION

typedef struct
{

UINT32 partitionNumber;
union
{

int relative;
UINT32 absolute;

} sectorAddress;

union
{

int sessionRelative;
UINT32 sessionAbsolute;
UINT32 mediaIndex;

} number;

NWSMSD_SESSION_ID sessionDesc;
NWSMSD_SESSION_HANDLE sessionHandle;
UINT32 mediaNumber;

} NWSMSD_MEDIA_POSITION;

partitionNumber returns the partition numbers.

Note: For position command and position inquire, this
field contains the absolute partition number.

sectorAddress.relative contains an offset relative to the current
sector. The value is in sectors and can be positive or negative.

sectorAddress.absolute returns or passes the session physical
sector address (for more information about this type of
addressing, see System Independent Data Format).

number.sessionRelative returns or passes the number of
sessions relative to the current position.

number.sessionAbsolute is the absolute session number from
the beginning of the partition.

number.mediaIndex finds the next media index if the
portioning mode is NWSMSD_MEDIA_INDEX and
mediaIndex is set to:

0 SDI positions the head to the media index at the end of
the current session. If it does not exist, SDI fails.

1 SDI finds the next media index unconditionally.

sessionDesc. If a reposition command is issued (not a position
inquiry), this field contains the session description to search
for. If a position inquiry is issued, this field returns the
current session’s description. This field is ignored if
sessionHandle is used.

B-14 Rev 2.0



Data Types and Structures

sessionHandle is used if the position mode is
NWSMSD_POSITION_SECTOR_ABS. This field passes a
session handle that was set by
NWSMSDOpenSessionForReading and

NWSMSDOpenSessionForWriting. sessionDesc is ignored
if this field is used.

mediaNumber passes the desired media number. If the media
is not mounted, SDI will mount it.

Rev 2.0 B-15



Storage Device APIs

NWSMSD_CONTROL_BLOCK

typedef struct
{

UINT32 transferBufferState;
NWSMSD_SESSION_HANDLE sessionHandle;
UINT32 transferBufferSequence;
NWBOOLEAN finalTransferBuffer;
UINT16 reservedVariable;
BUFFERPTR transferBuffer;
UINT32 transferBufferSizeAllocated;
UINT32 transferBufferSizeData;
UINT32 sessionDataType;
UINT32 transferBufferDataOffset;
UINT32 bytesNotTransfered;
UINT32 bytesSpanned;
NWSMSD_TRANS_BUF_POSITION beginningPosition;
NWSMSD_TRANS_BUF_POSITION endingPosition;
UINT32 completionStatus;

} NWSMSD_CONTROL_BLOCK;

transferBufferState is set and used by the engine to track the
transfer buffer(s). SDI updates this value before returning it
to the engine. The statuses are:

NWSMSD_UNASSIGNED (0x00000000)
The transfer buffer is allocated and not in use. The
engine sets this.

NWSMSD_AVAILABLE (0x00000001)
The transfer buffer was allocated and available for the
engine to use.

NWSMSD_READY_TO_TRANSFER (0x00000002)
The transfer buffer is ready for SDI to use. This is set
by the engine. Set the field to this value when calling
NWSMSDReadSessionData or

NWSMSDWriteSessionData.

NWSMSD_TRANSFER_IN_PROGRESS (0x00000003)
SDI is transferring data to the transfer buffer.

NWSMSD_TRANSFER_COMPLETE (0x00000004)
SDI has completed the data transfer.

NWSMSD_TRANSFER_STATUS_LAST (0x00000005)
This value marks the last status and is not used for
anything else.

sessionHandle passes the session handle. The engine sets this
field before calling SDI.

transferBufferSequence specifies the sequence in which the
transfer buffers are read or written. This field is initially set

B-16 Rev 2.0



Data Types and Structures

by the engine (e.g., SME) for either writes or reads. Before
calling NWSMSDWriteSessionData, the engine initially sets
this field to 1. After making the first call, the engine
increments it before making the next call.

For a read session (calling NWSMSDReadSessionData), the
initial value of this field can be one of two values:

• 0xFFFFFFFF, the function returns the sequence number
of the transfer buffer read. Reset this field to
0xFFFFFFFF each time NWSMSDReadSessionData is
called.

• Any value except 0xFFFFFFFF. SDI retrieves the
specified transfer buffer. The actual sequence found is
returned with the transfer buffer (i.e.., if the specified
transfer buffer is not found, the transfer buffer with the
next higher sequence number is returned).

finalTransferBuffer is TRUE if the last transfer buffer was
read. For a write session, the engine must set this to TRUE if
it is the last transfer buffer.

reservedVariable is used internally by SDI.

transferBuffer points to the transfer buffer. The engine
allocates memory for the transfer buffer and is responsible for
releasing it. NWSMSDOpenSessionForReading and
NWSMSDOpenSessionForWriting determines the size of
the transfer buffer.

Caution: Under SDI 1.0 only, the maximum transfer
buffer is 256kb.

transferBufferSizeAllocated passes the transfer buffer’s size.
This is used to determine if the transfer buffer is large enough
to hold the requested data. The engine sets this field before
calling SDI.

transferBufferSizeData is the transfer buffer header size and
data size. This value is set by the engine. For write
operations, the field specifies the amount of data to be
written. For read operations, it shows the maximum amount
of data or header and data that can be read into the
transferBuffer. If the field is set to 0,
transferBufferSizeAllocated is used. SDI updates this field to
specify the number of bytes actually read.

Rev 2.0 B-17



Storage Device APIs

sessionDataType specifies the type of data in the transfer
buffer as shown below:

NWSMSD_TSA_DATA (0x00000001): The transfer buffer
contains the data from the TSA.

NWSMSD_END_OF_TSA_DATA (0x00000002)

NWSMSD_SESSION_TRAILER (0x00000003)

NWSMSD_SESSION_INDEX (0x00000004)

NWSMSD_MEDIA_INDEX (0x00000005)

NWSMSD_END_OF_SESSION (0x00000006)
The transfer buffer is empty.

Session Index

Once an engine starts writing the session index, the media
cannot be accessed by the current engine or any engine
except to complete the session index (i.e., no other data
except the session index data may be placed between the
session trailer and the session index).

Session Trailer

For a back up session, the contents of the transfer buffer
are written as the session trailer. Once an engine starts
writing the session trailer, the media is not accessible to
the current engine or any engine except to complete the
session trailer or to write the session index.
NWSMSDCloseSession must still be called to indicate
the end of data transfers to this session (nothing is put
onto the media).

If the engine writes the session trailer onto the media, the
engine must do one of the following:

• Immediately write a session index and call
NWSMSDCloseSession

• Call NWSMSDCloseSession without witting a
session index

Witting a session index causes SDI to block all operations
to the media until this engine calls
NWSMSDCloseSession. This engine may continue to

write trailers, indexes, etc., until NWSMSDCloseSession

B-18 Rev 2.0



Data Types and Structures

is called. However, SDI enforces the order of the trailers,
indexes, etc., as follows:

1. File mark
2. Session trailer
3. Session index
4. Media index
5. Set mark

No data is allowed between any section. If the engine
writes anything in the wrong order,
NWSMSD_NONSMS_COMPLIANT is returned.

transferBufferDataOffset is the offset from the beginning of
the transfer buffer to the start of data.

bytesNotTransfered returns the number of bytes not
transferred for the specified I/O operation.

beginningPosition returns the transfer buffer’s beginning
position. Transfer buffers are written on sector boundaries.
All NWSMSD_MEDIA_POSITION fields contain session
physical sector addresses.

endingPosition returns the transfer buffer’s ending position.
Since the transfer buffer’s size is a multiple of the sector’s
size, the end lies on a sector boundary.

completionStatus returns the pending and completion status
of nonwaiting requests.

Rev 2.0 B-19



Storage Device APIs

NWSMSD_DEVICE_LIST

typedef struct
{

UINT32 deviceTotalCount;
UINT32 deviceMaxCount;
UINT32 deviceResponseCount;
UINT32 uniqueDeviceID;
NWSMSD_DEVICE_ID deviceID[];

} NWSMSD_DEVICE_LIST;

deviceTotalCount returns the total number of available
devices. If the engine calls NWSMSDListDevices

repetitively, the engine must be aware that SDI updates this
field if a device is added or removed
(NWSMSD_DEVICE_LIST_CHANGED is returned if the field
is updated). We recommend that the engine monitor this
value, while the list is being built, to ensure the list is up to
date.

deviceMaxCount contains the maximum number of elements
deviceID can have.

deviceResponseCount returns the number of device IDs that
SDI put into deviceID. All device IDs are returned if the
value is smaller than deviceMaxCount. However, if this value
is equal to deviceMaxCount, the engine must call
NWSMSDListDevices again.

uniqueDeviceID contains the next device ID to be returned.

deviceID is an array of deviceMaxCount elements. The engine
must allocate these elements. That is, if deviceMaxCount is 3,
deviceID must be set to deviceID[3], when memory is allocated
for it. See NWSMSD_DEVICE_ID for more information.

B-20 Rev 2.0



Data Types and Structures

NWSMSD_MEDIA_LIST

typedef struct
{

UINT32 mediaTotalCount;
UINT32 mediaMaxCount;
UINT32 mediaResponseCount;
UINT32 uniqueMediaID;
NWSMSD_MEDIA_ID mediaID[];

} NWSMSD_MEDIA_LIST;

mediaTotalCount returns the total number of available media.
If the engine calls NWSMSDListMedia more than once to
retrieve the list of media, the engine should be aware that
SDI will update this field if media is added or removed. We
recommend that the engine monitor this value while the list is
being built to ensure the list is up to date.

mediaMaxCount passes the maximum number of elements
mediaID can hold.

mediaResponseCount returns the number of IDs SDI put into
mediaID. All media IDs are returned if this value is less than
mediaMaxCount. However, if this value is equal to
mediaMaxCount, the engine must call NWSMSDListMedia

again.

uniqueMediaID contains the next media ID to be returned.

mediaID is an array of mediaMaxCount elements. The engine
must allocate these elements. That is, if mediaMaxCount is 3,
mediaID must be set to mediaID[3], when memory is allocated
for it. See NWSMSD_MEDIA_ID for more information.

Rev 2.0 B-21



Storage Device APIs

NWSMSD_MEDIA_STATUS

typedef struct
{

UINT32 mediaMounted;
NWSMSD_OBJECT_STATUS status;

} NWSMSD_MEDIA_STATUS;

mediaMounted returns the media’s mounted status.

NWSMSD_MEDIA_IS_MOUNTED (0x00000001)
Media is mounted by an engine.

NWSMSD_MEDIA_IS_DISMOUNTED (0x00000002)
Media is not mounted by any engine.

NWSMSD_MEDIA_MOUNT_PENDING (0x00000003)
Media is not mounted by any engine but a mount
request is pending.

status contains the media’s status. See
NWSMSD_OBJECT_STATUS for more information.

B-22 Rev 2.0



Data Types and Structures

NWSMSD_TRANSFER_BUF_INFO

typedef struct
{

UINT32 sectorSize;
UINT32 maxTransferBufferSize;
UINT16 applicationAreaSize;
UINT16 applicationAreaOffset;
UINT16 transferBufferDataOffset;

} NWSMSD_TRANSFER_BUF_INFO;

sectorSize returns the smallest writable unit the engine can
put onto the media. The engine should allocate a transfer
buffer that is a multiple of sectorSize.

applicationAreaSize passes the number of bytes required
within the transfer buffer. This area contains the engine’s
session header information, if any.

applicationAreaOffset returns the offset to the engine area.
This offset is from the beginning of the transfer buffer. This
area contains data formatted according to the SIDF’s
specifications.

transferBufferDataOffset returns the offset from the beginning
of the transfer buffer where the engine may begin writing the
records (i.e., the data set information and data set data).

Rev 2.0 B-23



Storage Device APIs

NWSMSD_TIMEOUTS

typedef struct
{

UINT32 NWSMSDListMedia;
UINT32 NWSMSDSubjugateDevice;
UINT32 NWSMSDSubjugateMedia;
UINT32 NWSMSDDismountMedia;
UINT32 NWSMSDOpenSessionForWriting;
UINT32 NWSMSDOpenSessionForReading;
UINT32 NWSMSDCloseSession;
UINT32 NWSMSDWriteSessionData;
UINT32 NWSMSDReadSessionData;
UINT32 NWSMSDLabelMedia;
UINT32 NWSMSDDeleteMedia;
UINT32 NWSMSDPositionMedia;
UINT32 NWSMSDMoveMedia;
UINT32 NWSDMSFormatMedia;

} NWSMSD_TIMEOUTS;

The time units for each field are in seconds.

B-24 Rev 2.0



Data Types and Structures

NWSMSD_SDI_DEFAULTS

typedef struct
{

NWSMSD_DEVICE_ID deviceDesc;
NWSMSD_MEDIA_ID mediaDesc;
NWSMSD_TIMEOUTS timeouts;

} NWSMSD_SDI_DEFAULTS;

deviceDesc passes or returns the default device’s description.

mediaDesc passes or returns the default media’s description.

timeouts passes or returns the timeout values for each
nonwaiting call. SDI uses these values to determine how long
it should wait before returning an NWSMSD_TIMEOUT
error.

Rev 2.0 B-25



Storage Device APIs

B-26 Rev 2.0


